Long-Term Irrigation Affects the Dynamics and Activity of the Wheat Rhizosphere Microbiome

نویسندگان

  • Dmitri V. Mavrodi
  • Olga V. Mavrodi
  • Liam D. H. Elbourne
  • Sasha Tetu
  • Robert F. Bonsall
  • James Parejko
  • Mingming Yang
  • Ian T. Paulsen
  • David M. Weller
  • Linda S. Thomashow
چکیده

The Inland Pacific Northwest (IPNW) encompasses 1. 6 million cropland hectares and is a major wheat-producing area in the western United States. The climate throughout the region is semi-arid, making the availability of water a significant challenge for IPNW agriculture. Much attention has been given to uncovering the effects of water stress on the physiology of wheat and the dynamics of its soilborne diseases. In contrast, the impact of soil moisture on the establishment and activity of microbial communities in the rhizosphere of dryland wheat remains poorly understood. We addressed this gap by conducting a three-year field study involving wheat grown in adjacent irrigated and dryland (rainfed) plots established in Lind, Washington State. We used deep amplicon sequencing of the V4 region of the 16S rRNA to characterize the responses of the wheat rhizosphere microbiome to overhead irrigation. We also characterized the population dynamics and activity of indigenous Phz+ rhizobacteria that produce the antibiotic phenazine-1-carboxylic acid (PCA) and contribute to the natural suppression of soilborne pathogens of wheat. Results of the study revealed that irrigation affected the Phz+ rhizobacteria adversely, which was evident from the significantly reduced plant colonization frequency, population size and levels of PCA in the field. The observed differences between irrigated and dryland plots were reproducible and amplified over the course of the study, thus identifying soil moisture as a critical abiotic factor that influences the dynamics, and activity of indigenous Phz+ communities. The three seasons of irrigation had a slight effect on the overall diversity within the rhizosphere microbiome but led to significant differences in the relative abundances of specific OTUs. In particular, irrigation differentially affected multiple groups of Bacteroidetes and Proteobacteria, including taxa with known plant growth-promoting activity. Analysis of environmental variables revealed that the separation between irrigated and dryland treatments was due to changes in the water potential (Ψm) and pH. In contrast, the temporal changes in the composition of the rhizosphere microbiome correlated with temperature and precipitation. In summary, our long-term study provides insights into how the availability of water in a semi-arid agroecosystem shapes the belowground wheat microbiome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat.

This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz(+)) and 2,4-diacetylphloroglucinol (Phl(+)) in the rhizosphere of wheat grown in the low-precipitation zone (150 to 300 mm annually) of the Columbia Plateau of the Inland Pacific Northwest. Population sizes and plant colonization fr...

متن کامل

Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat

The rhizosphere microbiome is regulated by plant genotype, root exudates and environment. There is substantial interest in breeding and managing crops that host root microbial communities that increase productivity. The eudicot model species Arabidopsis has been used to investigate these processes, however a model for monocotyledons is also required. We characterized the rhizosphere microbiome ...

متن کامل

اثرهای ریزوسفری گندم (Triticum aestivum L.) بر قابلیت استفاده فسفر و برخی از ویژگی‌های بیولوژیک در خاک‌های آهکی دشت شهرکرد

The chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora. Plant species have involved various adaptive strategies to acquire P from soil pools. Therefore, the objective of this research was to evalua...

متن کامل

Effects of jasmonic acid signalling on the wheat microbiome differ between body sites

Jasmonic acid (JA) signalling helps plants to defend themselves against necrotrophic pathogens and herbivorous insects and has been shown to influence the root microbiome of Arabidopsis thaliana. In this study, we determined whether JA signalling influences the diversity and functioning of the wheat (Triticum aestivum) microbiome and whether these effects are specific to particular parts of the...

متن کامل

Estimation of Evaporation and Transpiration of Wheat Plant in Zaraghan Station Using CROPWAT Model

In this research, amount of evaporation and transpiration and water requirement of wheat plant for Marvdasht town (representation station: Zaraghan) during 17-years statistical duration from 1989-2005 and properties of plant and soil are calculated using CROPWAT software. At the first, trends of dry and wet periods for mentioned station were determined using long-term average of climatic data (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018